23 research outputs found

    Cell Death by SecTRAPs: Thioredoxin Reductase as a Prooxidant Killer of Cells

    Get PDF
    BACKGROUND: SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins) can be formed from the selenoprotein thioredoxin reductase (TrxR) by targeting of its selenocysteine (Sec) residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function. PRINCIPAL FINDINGS: Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS) and consequently antioxidants could protect against the cell killing by SecTRAPs. CONCLUSIONS: We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity

    Identification of Thioredoxin Glutathione Reductase Inhibitors That Kill Cestode and Trematode Parasites

    Get PDF
    Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR) is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms) and trematoda (flukes), while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites

    Nanoparticles of Selenium as Species with Stronger Physiological Effects in Sheep in Comparison with Sodium Selenite

    Get PDF
    The present study was designed to compare the effects of nano red selenium and sodium selenite on the antioxidative activities of neutrophils and the hematological parameters in sheep. Fifteen sheep were randomly allocated into three groups. Groups 1 and 2 received selenium nanoparticles orally at 1 mg/kg and sodium selenite at 1 mg Se/kg for 10 consecutive days; group 3 served as the control. To assess the degrees of oxidative stress and of lipid peroxidation of the cellular membranes, the levels of thiobarbituric acid reactive substances (TBARS) were determined in serum samples that were collected at different supplementation intervals, i.e., after 0, 10, 20, and 30 days. In addition, hematological parameters in the serum samples were measured by routine procedures. It was found that TBARS levels in groups 1 and 2 were significantly higher on days 20 and 30 compared to the basal level on day 0. It was also found that on day 30, the TBARS activities in both treated groups were significantly higher than those of the controls (P < 0.05). These findings may explain the seemingly paradoxical effects of supplemental selenium on the indicators of oxidative stress, as the levels of TBARS were generally expected to decrease in the presence of selenium. There were no significant differences between the PCV and RBC values in the three groups. The white blood cell count (WBC) in group 1 showed a significant increase on days 20 and 30 in comparison with the control group. However, in group 2, there was a significant increase of the WBC value just on day 20 in comparison with the control group. Also, there were significant increases of the neutrophil counts and significant decreases of the lymphocyte counts on day 10 in group 1, in comparison with those in group 2 and controls, and on days 20 and 30 in groups 1 and 2 in comparison with those in the control group

    Thioredoxin System

    No full text
    corecore